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Estimates of optimal storage conditions in neural network
memories based on random matrix theory

W Tarkowski and M Lewenstein

Institute for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikéw 3246, 02-668
Warsaw, Poland

Abstract. We formulate a method for estimating the critical conditions for storage of sets
of data in neural network memory. This variational method is based on random matrix
theory and depends on calculating the average spectrum of a matrix, whose elements are
given by overlaps of the stored patterns. Several generic cases of mndom overlap matrices
are considered. We investigate the cases of simply uncorrelated random patterns, and

Sf.lah&uy and M:mdrlll(.duy cotreiaied ones. We obtain bounds of the critical curve in
the control parameters space, which determine the stability of the stored data sets.

1. Introduction

One of the most important problems in the theory of attractor neural networks [1, 2, 3]
is that of storage capacity. In the last years many works have been devoted to develop
theories concerning optimal storage capacity of the perceptron and Hopfield-type {2]
networks. The problem of optimal remembering of a set of random and statistically
independent patierns was asked and solved by Gardner [4]. She formulated a so-
called ‘Gardner’s program’, within which one may obtain the critical conditions for
storage of specified sets of patterns for arbitrary learning algorithms.

Originally, Gardner investigated independent and biased (but uncorrelated)
patterns. In the case of purely independent and unbiased ones she obtained the
well known result

a= (] " f}i(t +n)’)_1 M

where «, is the optimal storage ratio [4] and « is the stability parameter. One may
easily check that o (x = 0) = 2. For biased patterns maximal storage capacity may
take larger values and in the case of sparse coding (e.g. when all units have the same
values with the probability close to one) a, tends to infinity for & — 0. Of course, one
should stress that the remembering of information in network depends not only on
the storage ratio but, generally, on the type of correlation of all considered patterns.

Gardner’s method has been used by many authors to derive interesting results,
It was used to calculate the optimal storage conditions in the presence of errors
in recognition [S]. Many restrictions for the synaptic connection matrices (J;;)
were considered, Gardner's method was applied, for example, to binary couplmgs
(J;; = £1) [6], to other cost functions [7], and to multi-dimensional nets [8,9].
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We should add that Gardner’s original idea was generalized to more realistic physical
situations (i.e. the presence of noise in network dynamics [10, 11]). Gardner’s program
was investigated by Mezard in the frame of the so-called cavity method [12].

One should stress, however, that there are several open questions concerning
Gardner’s approach. It is very hard, for instance, to apply it to correlated patterns
(when the average value of the correlation between different units i non-zero). This
problem has been recently discussed by us [13] for the case of exponentially correlated
patterns. '

In Gardner’s original paper the so-called replica method is used. This procedure,
although very effective, is frequently criticized from purely mathematical point of
view. It would, therefore, be of great importance to have some ‘non-replica’ methods
of calculation and estimating the storage ratio as a function of parameters of the
network. Such a variational method was proposed by Tarkowski et al [14]. We
considered purely deterministic sets of patterns, which were invariant with respect to
one-dimensional translations. The considered patterns had a ‘pixel” shape. One of the
most exciting results of our analysis concerned the shape of the stability curve (ie.
the dependence of the maximal stability parameter x versus the length of each ‘pixel’)
for small storage ratios a. The curve has quite an irregular, oscillating structure. This
shape is an analytical reflection of the geometrical properties of the considered set
of deterministic, highly ordered patterns.

In the present work we discuss the same method of estimating the critical
conditions for storage of a set of random patterns in neural network memories. This
method employs the properties of the matrix whose elements are overlaps between
the patterns. For random ones, overlaps become stochastic variables, and thus our
method employs random matrix theory [15]. The method is quite general and allows
one to estimate storage conditions for various sets of patterns. This fact is of great
importance, especially if exact results are hard to obtain. An important by-product of
our paper is the presentation of more applications to the random matrix theory. We
calculate average density of eigenvalues for a wide class of random overlap matrices.
These results may be employed to study learning times for various learning algorithms
[16-18].

The plan of the work is as follows: In section 2 we formulate our variational
method of evaluating the fractional volume in the space of interactions [14]. We then
apply it to stochastic sets of data and determine the lower and upper boundaries of
a,. One obtains these bounds by investigation of a spectrum of the stochastic overlap
matrix. Section 3 presents considerations concerning purely stochastic uncorrelated
sets of data. Just to illustrate the method we derive bounds of Gardner’s curve (1). In
section 4 we investigate correlated patterns and obtain the limitations of the critical
curve for such kinds of data. Two kinds of correlations are considered. Denoting the
pattern by £!, where n enumerates the pattern and ¢ the site in the network, we
introduce ‘spatial’ correlations when

(E;G;") = 6##’0(.”').7") . (2)
and ‘semantic’ ones in the case of
(€rEL) = Clu, )60, )]

In the last part of this paper, the appendix, we present technical details of
calculation of average spectrum of random overlap matrices. To this aim we use the
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method of supersymmetry, and the Gaussian functional integration over commuting
and anti-commuting (Grassman) variables [19, 20].

2. Fractional volume

In this section we present a method of evaluation of the fractional volume in the
interaction space, which is defined as follows:

LIS T 008 Y J;ezv"'f“ k)6(3 ;4 JE — N)]
.[ane:dJu5(Z;¢= i N)] .

Our approach does not make use of the replica method.
The fractional volume V,, may be written in the form

VT=;[=NIII/;=exp{N(-j1VZi:InV,~)} ()

Vp = “)

and
Ji;
V= ij;ﬁ aJj; I, o (¢ i 7-N’-ff = ”)‘5(2#5 Jizj - N) - ®; ©)
' fH,';e; dJ;j‘s(Zj;ﬁ ‘]izj - N) N;
The normalization constant A is easy to obtain in the limit N — oo
'Afi = CeN(l+ln(Z7r})/2 (7)

where C is a constant that for large N behaves as In(C/N) — oc.

Usually, one proceeds by calculating the average (In V) with the help of the
replica method [4]. Instead of performing the average, we integrate over J;j» an
rewrite the numerator of the expression (6) in the following form:

_ 1 1 (Vdm )N { ( 1 )}
q)*_z—fri'(Zw)aN (detM*)‘ﬂf dsexps N [ s — lns+ lnw

/ Hd)\ exp{—sZA (M)ZLA, } (8)

where C denotes the integration contour for s going from —ico 1o +ico. (M¥)~1 s
the inverse of the overlap matrix M, whose elements are given by

. 1 [ ]
My, =) gl el )
i#

The dimension of the matrix M’ is p = oN. Strictly speaking equation (8) is valid
if and only if the matrix M* has an inverse. Otherwise the integral over the As has
to be restricted to the projection of the set of A > « onto the subspace of As for
which (M*)~! exists. The expression (8) as we shall see below, is the main ingredient
of our approach. One should stress that the matrix M’ is in general i-dependent.
Further proceeding consists of evaluating the expression (8) for large N and s limits,
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and using the saddle point technique. It turns out that saddle point for s is attained
for real, positive s. Moreover, the value of s at the saddle point tends to infinity,
when o becomes critical. Only the minimum of the quadratic form in the exponent of
the integrand of the expression (8) contributes to the integral over the As. Following
[14] the final result reads

<Arm?n (uzuj A (MY, )> N (10)

where (-} means the averaging over ¢s. The equation (10) determines the critical
curve a {x). Note that its left-hand side depends explicitly on « and implicitly on e,
through the dimension of M°*. Obviously, the exact solution of this equation is very
difficult. The minimum of the quadratic form in parenthesis has to be taken before
averaging, and, in particular, depends on the realization of the random matrix M.
On the other hand, it is possible, however, to evaluate the minimum on the left-hand
side of equation (10) for deterministic sets of patterns using a variational approach.
The details of such applications of our method ware presented in [14].

The difficulties with exact accounting of (10) in the case of random patterns
stimulated us to look for an approximate approach. Here we propose the approximate
method of solving the equation (10), which is based on the theory of random matrices
and allows us to determine upper and lower boundaries of the critical curve o« as
a function of the stability parameter «. In order to do that one has to know the
spectrum of the overlap matrix AT¢, defined in (10). If matrix A7 is bounded from
above and below, we immediately obtam

O‘A'“zN <mm (Z A (ML )) < "‘;ZN (11)

max min

where A, and A, .. are the minimal and the maximal value of the eigenvalues of
the matrix M, respectively. The upper and lower bounds of the critical curve have
then the following form:

'{'2 = )\max/a Nz = ’\min/a' (12)

The advantage of this method is obvious: when evaluation of the exact critical curve
is hard or impossible, one may easily obtain boundaries of this curve using the
average density of the eigenvalue spectrum of the matrix M. Of course, accounting
of eigenvalues of the overlap matrix can also be, in particular cases, very difficult, but
to this aim one may use standard methods, which were discovered and developed in
the random matrix theory. In the next section we use such methods to solve a few
interesting examples,

It is worth stressing that estimates of A ;, and A_,, from the eigenvalue spectrum
are, strictly speaking, valid if and only if the eigenvalue spectrum is self-averaging.
For standard random matrix ensembles it is true {15,21]. The probability of finding an
eigenvalue A outside of the interval [A;,, Apa] is finite only then, when |A — X . | or
|A — Apax| @re of the order of O( N ~1/®). We expect that a similar property holds for
all of the examples of matrices considered in the following. All of these matrices are
constructed for random unbiased patterns. For biased patterns correlation matrices
have typically one additional eigenvalue of the order of N [18]. This fact may lead
to a significant modification of the upper bound for .
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3. Spectrum of the overlap matrix for uncorrelated patterns

Let us investigate optimal storage conditions for the simplest case of unbiased and
uncorrelated random patterns with the probability distribution

Pr(¢f =+1) = § (13)

for all u and ¢. Such a case of purely stochastic patterns was investigated by E
Gardner [4]. Our treatment of this prob]em depends on of calculating the average
eigenvalue density of the matrix M. This is done by using the so-called supersymmetry
method [20]. Leaving all technical details (which are contained in the appendix) we
describe below the method of calculation of the average eigenvalue density, which
becomes exact in the limit of large N.

In all of the cases considered the supersymmetry approach leads to the conclusion
that the logarithm of the determinant of the matrix M is a self-averaging quantity
(see appendix). In other words

(det™3(A(X —ie) — M)) = exp {—g /d)\’g()\’) In( A — ie — )\’)} (14)

where ¢ is a small positive real number (see [22]) and o( A) is the average eigenvalue
spectrum of the matrix M

P
Q(A)=<%25(A-Aj)>. (15)
=1

In this expression {};}, j = 1,...,p denote the set of eigenvalues of the matrix M.
If so, then we can calculate o(A) as well as A ; and A .., simply by averaging
(14). We introduce

Z()) = <f®(\/if‘_m) exp{—izr 2, (A= )6, - Mw,):c#.}>

By g
= (det™ 2 (1( X —ie) — M) (16)

where M is the overlap matrix defined in (9). Note that by changing the integration
variables x, — &'z, the matrix M from (9) can be substituted by

p = Zf"e" a7
J#!
From (14) (sec also [22]) it follows that
p
o(A) = —mlm—]n Z(X). (18)

On the other hand, it is easy to observe that

Z(,\)=</mupyj exp{iAZ.ri-i—%Zy? qué-u ” >

f-‘lJ

/’Da: Dy, exp{lAE:r + - Zyj ZNZw } (19)

K.
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The constant value in front of the all integrals, which expresses the quantity Z()), is
negligible because the In Z enters equation (18).

Introducing macro-variable s = 3, a:i/N and its conjugate counterpart 3, the
Z(A) reduces to

z(A)=/dsds exp{ﬂ—g—ln(s-l")ﬂ”’”‘%' (5‘&{)}

AF Tl o

j dsdse V758, (20)

The above integral is evaluated then by the saddle-point method. The final result has
the following form (see also [16-18]):

Ve — (14 a = 2)?

o) = a+ @)
for X € [(1 - V&)?,(1+ /a)?] where « < 1, and
O PR ARSIV PPV @)

2ral)

for A € [(1-/a)?, (14 /a)*]u {0} while o > 1. For other ), the density g(A) = 0.
As we can see, the density of the elgenvalues spectrum has qunte a regular shape
and takes the value zero on its exireme p()lﬁts The Prcscm.e of the delia function
BB quite easy to explain. The inverse of the matrix M may be written as a sum of
N projector operators in the o /N-dimensional space. When the dimension p = aN
of the overlap matrix M becomes larger than N some of the eigenvalues (exactly:
(a — 1)N) take the value zero. Now one may write investigated bounds for the
critical curve. In this case

Apax = (1+ Va)? @23)
Amin = (1= Var)? (24)
and the upper and lower boundaries respectively read
KZZ = (1 + \/a)z (25)
o
2 U- Ve
K = p. . (26)

Of course, we should take into consideration the 4 function in the formula (22). That
limits the validity of the lower bounds to the region of 0 < a < 1.

The results obtained in this section are plotted in figures 1 and 2 to allow
comparison with the other results. The long-dashed lines in both figures are Gardner’s
exact curve, while the solid lines are the limitations obtained from equations (26).
One should stress that the differences between all three lines for large enough «
are very small. For small «, the precision of our estimate is worse. Obviously, the
lower bound has greater importance than the upper one. In the statistical sense (with
probability one), the area below the lower line is the stability area. That means that
for each point in the described (a,x)} area the conditions for storage of a set of

p = aN random patterns with stability « are fulfilled. On the other hand, above the

upper line, all points are unstabilized.

Summarizing this section we stress that results obtained by using the variational
approach differ not much from the exact one at least for large . The relevance of
our approximate method increases when it is impossible to obtain the exact result.
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4. Estimations of the storage conditions for correlated sets of stochastic patterns

In this section we apply the variational method to calculate bounds of the critical
curve for several specified sets of patterns. The exact expressions for the critical
curves in this case are rather hard to obtain. In these cases our approximate method
plays an essential role in understanding the mechanism of remembering and storing
the sets of data. We stress that in principle the variational limitations can be obtained
for arbitrary set of patterns. Of course, the exactness of these bounds can differ for
each considered case.

As the first example of using of the variational approach we investigate the set of

‘semantically’ correlated patterns defined as follows:

(€5)=0 27
while

(€res) = 6,5, Clu, ") (28)
forall j=1,...,Nand g =1,...,aN. Obviously

C(0)=1. (29)

The above expressions mean that the patterns are unbiased, ie. the average over
single unit for each pattern is zero (£ are statistically independent for different z).
As a quite interesting example we can take the exponential shape of the function
C(lp — p']) = exp[—(1/ L )| — ’]]. Random patterns with exponential correlations
of the kind (28) are quite generic, and can be easily generated. For a given ¢ they
correspond to thermal equilibrium states of the one-dimensional Ising model with the

Hamiltonian H; = -5, £#¢/*!. The temperature is related then to the correlation
length L, through
L. = —(Intanh{1/T))~". (30)

The special case of exponentially correlated patterns has recent]y been investigated by
us [13]. For this particular case, we have been able to show that the storage capacity
o tends to infinity as L. — oo. This is a generalization of the classical Willshaw
results for sparsely coded patterns ([23], see also [4]). We stress, however, that this
exact result could only be obtained for the exponential form of C(p, u').

Here we shall consider the general form of C(u,u’). In order to do this we
again use the determinant method. After calculations similar to those in section 3

expression (16) becomes

Z(A)_/Dz Dy, exp{lAZa: +4Z ,—ZN > 2,Ch p,y}}. (31)

ok

Let s = 3 vy} ¢/N, 5-conjugated variable and C; denotes eigenvalues of the
correlation matnx C(,u u'). For C(u,p') = C(lp — u']) eigenvalues are given by
the Fourier transform

alN-1 )
Cr= ) Clu)e+* (32)

p=0
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where w, = 2rk/p and p = aN.
In the limit of large N and p the quantity Z{A) may again be evaluated, using
the saddle-point method. Tb this end we have to find a minimum of the ‘free energy’

F=s84 30—+ 5W(EC-M)yg (33

where denotes the average value over the spectrum of the correlation matrix
o(C) 4 p

ron= [ reneerac, (34
For C(p,u') = C(|u — p'[) we have

o(C) = lC(lw)l (35)
for w such that C(w) = C. Note that the requirement C'(0) = 1 implies that

fc C Clo(C)dC = 1. (36)

Using the saddle-point method to evaluate the integral (31) one may easily obtain

8 1
—+2a)\< > =1l-a 37
2 C -2 o(C)

where (-} ,c) is the average over the distribution of C' considered.

In this paper we find the bounds of the critical curve in the two generic cases:
when the function ¢(C) is a uniform and semicircular distribution. From this point
on we omit somewhat complicated, but rather elementary calculations and show only
our results.

First we consider a uniform distribution of C

o(C) = g

axk Wik

(38)
for Cpy € C € C,,,. Note that the condition (36) results in the equality
Chpin T Cuax = 2. Secondly we consider the case where the distribution of C' has the
semicircular form

o()) = %\/w(c-a)—(c—a)z (39)

for a =+ £ C € a+ r, where r is the radius of the circle and « is the distance from
the centre of it to the point C = 0. The constraint (36) implies that 7 + ¢ = 1.

The accounting for the limits A, Ap. Of the cigenvalue density consists in
eliminating from the (37) the variable s. It can easily be seen that Ay, (Apay) are
attained when a real solution of (37) ceases to exist. Simple graphical analysis of (37)

shows that this happens at the point when the derivative of the left-hand side of (37)

with respect to s is zero

1 c
1_ < —0. 40
3 2"‘)‘<(sc—2)\)2>g(c) 0 (“0)
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Equation (40) means that at this point the real solution of (37) for s becomes doubly
degenerated and bifurcates into two complex ones. The two equations (37) and

(40) have two unique real solutions s(o, k) and A(a,x). The values of A(a, k)
obtained in such a way are A,;, and A,,.. In view of the complicated shape of
the solution of (37) and (40) we solve them using a numerical method. The results

(i.e. the dependence of the stability parameter « on the storage ratio o) are plotted
in figure 1. The main difference between the solutions obtained depends on the
character of the edges of the distribution p(C). In the case of uniform distribution
(38) the eigenvalue density o(C') has jumps at the edges of its support. For the
semicircular law the eigenvalue density takes the value zero on each border of its
carrier. One should stress that resulting bounds are practically identical for the two

cases considered of distribution of C with the same width, so we present only the
results for uniform distribution g(C} in figure 1.

3 . 3
2.5 - | 25 '
24 | 2 .
w150 i - s |
A Y N . '
SRR S R
3 bR - \ \
E L N N N
B ~ hY
0.5 \\ AN - 05 \\\\ ~
1 Tl TR R
o T —-A.—"_‘_.,_.l— ._.‘—AL_;, " 0 TR L IIT TS cmma )
0 1 2 3 4 5 8 0 1 2 3 4 s 6
K

Figure L Estimates of the critical capacity o as a
function of x for various types of stored patterns.
The long-dashed line corresponds to Gardner's
exact result for purely mndom patterns, whereas

Figure 2. As figure I, except that the thick dashed
line now presents estimates for ‘spatially’ correlated
pattems with Cmay — Cyin = 0.2, whereas the short

dashed line presents those with Cpax — Cyip = 1.8
the solid lines correspond to our estimates for ’

purely randoem ones. The thick dashed line presents
estimates for ‘semantically’ correlated patterns with
Cmax — Crin = 0.2, whereas the short dashed line

presents those for the same kind of patterns with
Cmarn — Cjn = 1.8.

Similarly we can calculate A, A, and o(A) in the case of patterns correlated

in a ‘spatial’ fashion. In this case £/ are statistically independent for different p, ',
but

(41)
whereas

(&i& ) =6,,CUi-3'D- (42)
As before, we introduce macro-variables s =}~ wi/N , its conjugate counterpart &

and after calculations similar to those in section 3 we obtain the ‘free’ energy in the
form

F=s8+ (G- +3(In(3C~ 1)y *3)
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where {-} ¢, is the average over the spectrum of the correlation matrix C(i ~ )
(cf expression (33), the only difference being that the spectral transform is ‘spatial’
rather than ‘semantic’). The quantities A, ;,, A, are determined as before from the
equation

1
2Xs + < > =a-1 (44)
2sC ~ 1 o(C)
and its derivative
c
(2sC - 1)? o(C) (43)

After performing the numerical evaluation we obtain the two limit values of .
The results are plotted in figure 2 for the case of uniform distribution ¢{ C). In both
figures 1 and 2 the solid curves give estimations in the absence of any correiations.
The thick dashed curves correspond to correlation width €, — C.. = 0.2. Note
that for such small widths correlations do not lead to significant modifications of the
estimates. The bounds change for (C,,, — C,,n) of the order of 1 (see narrow dashed
curves),

Tn esmmary we otr

L JUSLHALY, Ww SUe woy forms of
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€
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t ar
correlations of patterns. First of all the resuits for both umform and semicircular
distributions of C (of the same width) are practically identical. This means that the
shape of the spectrum of the correlation matrix does not play an important role in
the limiting bounds. On the other hand for ‘spatially’ correlated patterns the bounds
of the critical curves depend rather weakly on the width of the distribution o( C), and
do not differ very much for the result for uncorrelated patterns. This suggests that the
exact results for ‘spatially’ correlated patterns may also lie close to Gardner’s original
curve (1). The sitvation is quite different for ‘semantically’ correlated data. Here the
dependence on the width of the distribution o(C) is rather strong. We may expect
a similar strong dependence with the exact results. Indeed, analysis of exponentially
correlated patterns shows that for ‘semantically’ correlated data the exact curve lies
far above Gardner’s one (1) when the correlation length is large [13].

5. Conclusions

In this paper we present a generic method of evaluating the critical conditions for
the storage of information in neural networks. This variational method employs the
analysis of the spectrum of overlap matrices and allows one to find bounds of the
critical curve which determine the phases of existence and vanishing of stability of
the stored sets of data. One should stress that with the help of our method these
bounds may be obtained, practically, for arbitrary patterns, for any particular form
of them, and their correlations, etc. In this paper several examples of such bounds

have been considered. We studied a wide class of overlap matrices corresponding to

various types of patterns. They are generic for many different physical situations. For

example ‘semantically’ correlated data plays a big role in psychology and the theory
of information processing. In fact, in the recent neurobiological experiments of
Miyashita [24,25) semantically correlated attractors were observed, Patterns in those
experiments were learned in a specific sequence. Attractors that corresponded to
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subsequent patterns exhibited correlations that decayed with the time delay between
learning periods. ‘Spatially’ correlated patterns are used in optical information theory.
One should also stress that our results may be directly used for evaluating the learning
time of various learning algorithms [16-18].

Our method has many advantages, but is limited to the case of correlations that
are bounded from below by positive Amio- In principle, however, it may be generalized

to the race nf X . = ) The minimum of tha auadratic form in aynreccion () chould
WS LR WAL IR I\ ln — AN A AW ARRAMRRANENEEAE WAL RARN ‘1“““.“‘-]' AWSFLAAR AR Unylvw.ull \I-l AIRANF VAR

then be restricted to the set of A s that are orthogonal to the kernel of the correlation
matrix (i.e. a set of those A s that are annihilated by the correlation matrix).

Finally we would like to mention the overlap matrices considered by us have
the same properties as the ones that are sums of random projection operators. Such
matrices have been recently discussed for applications in nuclear physics and quantum
chaos [26].
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Appendix. The supersymmetry method

In this appendix we calculate in detail the eigenvalue spectrum of the matrix A
defined in section 2 (see expression (9)). The method is easily generalized to all
the other considered overlap matrices [19]. As the first step we define the average

spectrum o( A) of the matrix M in the same way as in section 3 (see expression (15)).
Then one may write

o(N) = —5—Im 5= Z(J)]; =0 (46)
where the generating function Z(J) is defined as follows:

Z(J) = <fm— Ddy, D', Do, exp [21 3 o, (A —ie = Db, — M)z,

!
+2 3w (A —ie~D)b, 0 — M0y,
wp!
+2i )¢ ((A—ie+ )6, —Mw,)qb#]) (a7
uop!

where the matrix eiements A7, ,, are given by expression (i7). In the above mtegral
z, and y, are standard commuting variables, whereas ¢,, ¢} are Grassman anti-
commuting ones

¢, b + G0, =0 (48)
¢, b + dub, =0 (49)
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The normalization of the Grassman variables is such that

/d¢=0=jd¢* (50)

1 * *
f‘bd‘i’“"\/i_??‘f"’ dé 1)
50
[ o0 dvasr = (52)

One then defines the so-called graded matrix

S:(é g) (53)

where A, B, ® and ¥ are N x N, M x M, M x N and N x M-dimensional
matrices, respectively. A, B, have commuting matrix elements, whereas & and ¥
haveanti-commuting ones. We may introduce now the symbol det , which denotes the
supersymmetry counterpart of a determinant, and for such graded matrices is defined
as follows:

det, S = det( A — ¥ (B)~'$)(det B)~", (54)

After introducing the new ‘bosonic’ (commuting) variables a;, b; and ‘fermionic’
(anti-commuting) ones o, o* the integral from expression (47) takes the form

Z(J) = </m# Dy, D¢, D¢, Da; Db; Dar) Doy exp{izaf +iy 8
K J

42y al(A-ie—J) 2D yR(A-ie—J)+2 ) L0, (A—ic+J)
® “ M

: v .
+2/ % Y EFE(ayz, + bje, + 1,0, + JdL0] }> (53)

gty

Now we can easily do the average over £s. Then we have to introduce the new
macro-variables to disentangle the mixed terms in the resulting expression

1 1
X = N E ;r:i Y = N Eﬁ yi

1 1 .
R=g2 o V=5 o,

1 . g (56)
= -fv E :c#qS# Ir= N E'u xu¢;

L] 1 *®
A='j\r‘zy#¢u A ='ﬁ¥yu¢u‘

Variables X, Y, R and V are commuting, whereas X, £*, A and A" are anti-
commuting. We also introduce conjugate counterparts for the eight above-defined
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variables X, ¥, R, V, £, £*, A and A*. Integrals over the local variables z,,, ¥,,,

a;, b;, a;, af, ¢, and ¢}, then become Gaussian and can be performed simply. The

resulting formula is

Z(J) = de dX dY dY dRdR AV dV AT d£ dT* d$* dA dA dA* dA”

x exp{NXX + NYY + NRR+ NVV + NE¥ - NZ*2*

+ NAA - NA*A" - lindet Q(X,Y,R,V,%,E%,A,A")

~ Lo Indet,P(X, ¥, R, V, %, 8%, A, A%)). (57)
The graded matrices Q, P that enter expression (57) have the following form

i—4X —4R  -4%

Q=| —-4R i-4Y —4A (58)
—45* AT —i42V
A -J)- X -R/2 -3
P= . ) pi N W o -A ) (59)
~L —A* AN+ J) -V

The integral in the expression (57) may be evalvated using the saddle-point
method. Generally the saddle-point equations give

R=0=~R.

£=%=0=A=a ©0)

The ‘bosonic’ and ‘fermionic’ parts of graded matrices thus decorrelate and the final
result is the same as (21) and (22). It indicates that indeed ‘logdet’ is a self-averaging
quantity. One may easily check by investigating the cigenvalues of the graded matrices
Q, P that the solution (60) is locally stable.

One may add that the above results can be also obtained within the replica method
[27,16-18,22].

Note added in proof. The problem of storage of correlated pattems in neural network memory has
been recenily solved by Lewenstein and Tarkowski (‘spatial’ and ‘semantical’ correlations) [13,28] and by
Monasson (‘spatial’ correlations} [29].
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