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Estimates of optimal storage conditions in neural network 
memories based on random matrix theory 

W ’kkowski and M Lewenstein 
Institute for ’heoretical Phyics, Polish Academy of Sciences, Al. Lotnik6w 32/46, 02.668 
Warsaw. Poland 

AbslracL We formulate a method for estimating the critical conditions for storage of s l s  
of data in neural network memory. This variational method is based on random matrix 
theory and depends on calculating the average spectrum of a matrix, whose elements are 
given by overlaps of the stored patterns. Several generic cases of random overlap matrices 
are considered. We investigate lhe rases of simply unmrrelated random patterns, and 
spa~ ia~ty  aiw srrnaniiuaiiy mrreiaea ones. ii?e abiain bounds o i  ibe criiicai curve in 
the  control parameten space, which determine the stability of the stored data sets. 

, ,,..% ..> , .... - . _ ~ ~ ~ , , ~ ~ ,  ~ ~ ~ ~ ~ . ~ . ~ 1  

1. Intmduction 

One of the most important problems in the theory of attractor neural networks [1,2,3] 
is that of storage capacity. In the last years many works have been devoted to develop 
theories concerning optimal storage capacity of the perceptron and Hopfield-type [Z] 
networks. The problem of optimal remembering of a set of random and statistically 
independent patterns was asked and solved by Gardner [4]. She formulated a so- 
called ‘Gardner’s program’, within which one may obtain the critical conditions for 
storage of specified sets of patterns for arbitrary learning algorithms. 

Originaily, Gardner investigated independent and biased @ut uncorrelated) 
patterns. In the case of purely independent and unbiased ones she obtained the 
well known result 

where a, is the optimal storage ratio (41 and K is the stability parameter. One may 
easily check that C Y ~ ( K  = 0) = 2. For biased patterns maximal storage capacity may 
take larger values and in the case of sparse coding (e.g. when all units have the same 
values with the probability close to one) a, tends to infinity for K - 0. Of course, one 
should stress that the remembering of information in network depends not only on 
the storage ratio but, generally, on the type of correlation of all considered patterns. 

Gardner’s method has been used by many authors to derive interesting results. 
It was used to calculate the optimal storage conditions in the presence of errors 
in recognition [SI. Many restrictions for the synaptic connection matrices (Jij) 
were considered. Gardner’s method was applied, for example, to binary couplings 
( J i j  = rtl) [6], to other cost functions [7], and to muIti-dimensional nets [8,9]. 
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We should add that Gardner’s original idea was generalized to more realistic physical 
situations (i.e. the presence of noise in network dynamics [lo, 111). Gardner’s program 
was investigated by Mezard in the frame of the so-called cavity method [12]. 

One should stress, however, that there are several open questions concerning 
Gardner’s approach. It is very hard, for instance, to apply it to mrrelated patterns 
(when the average value of the correlation between different units is non-zero). This 
problem has been recently discussed by us [13] for the case of exponentially correlated 
patterns. 

In Gardner’s original paper the so-called replica method is used. This procedure, 
although very effective, is frequently criticized from purely mathematical point of 
new. It would, therefore, be of great importance to have some ‘non-replica’ methods 
of calculation and estimating the storage ratio as a function of parameters of the 
network. Such a variational method was proposed by Tarkowski et a1 [14]. We 
considered purely deterministic sets of patterns, which were invariant with respect to 
one-dimensional translations. The considered patterns had a ‘pixel’ shape. One of the 
most exciting results of our analysis concerned the shape of the stability curve (i.e. 
the dependence of the maximal stability parameter n versus the length of each ‘pixel’) 
for small storage ratios a. The curve has quite an irregular, oscillating structure. This 
shape is an analytical reflection of the geometrical properties of the considered set 
of deterministic, highly ordered patterns. 

In the present work we discuss the Same method of estimating the critical 
conditions for storage of a set of random patterns in neural network memories. This 
method employs the properties of the matrix whose elements are overlaps between 
the patterns. For random ones, overlaps become stochastic variables, and thus our 
method employs random matrix theory [U]. The method is quite general and allows 
one to estimate storage conditions for various sets of patterns. This fact is of great 
importance, especially if exact results are hard to obtain. An important by-product of 
our paper is the presentation of more applications to the random matrix theory. We 
calculate average density of eigenvalues for a wide class of random werlap matrices. 
These results may be employed to study learning times for various learning algorithms 
[1&18]. 

The plan of the work is as follows: In section 2 we formulate our variational 
method of evaluating the fractional volume in the space of interactions [14]. We then 
apply it to stochastic sets of data and determine the lower and upper boundaries of 
af. One obtains these bounds by investigation of a spectrum of the stochastic overlap 
matrix. Section 3 presents considerations concerning purely stochastic uncorrelated 
sets of data. Just to illustrate the method we derive bounds of Gardner’s curve (1). In 
section 4 we investigate correlated patterns and obtain the limitations of the critical 
curve for such kinds of data, ’ bo  kinds of correlations are considered. Denoting the 
pattern by {r, where p enumerates the pattern and i the site in the network, we 
introduce ‘spatial’ correlations when 
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(€;€;,’) = 6,,,,,C(j,j’) (2) 

(€;€;#’) = C(CL,CL’)6,,,. (3) 

and ‘semantic’ ones in the case of 

In the last part of this paper, the appendix, we present technical details of 
calculation of average spectrum of random overlap matrices. ’lb this aim we use the 
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method of supersymmetry, and the Gaussian functional integration over commuting 
and anti-commuting (Grassman) variables 119,201. 

2. kactional volume 

In this section we present a method of evaluation of the fractional volume in the 
interaction space, which is defined as follows: 

Our approach does not make use of the replica method. 
The fractional wlume V, may be written in the form 

and 

The normalization constant N is easy to obtain in the limit N -+ 00 

(7) Ni = ceN(1tW")) /2  

where C is a constant that for large N behaves as ln(C/N) + 00. 

Usually, one proceeds by calculating the average ( I n y )  with the help of the 
replica method [4]. Instead of performing the average, we integrate over Jij, and 
rewrite the numerator of the expression (6) in the following form: 

where C denotes the integration contour for s going from -io0 to +im. ( Q i ) - I  is 
the inverse of the overlap matrix fii, whose elements are given by 

M ; , , = - E < i € j € i  1 P P P' €j  P' 

j# i  
(9) 

The dimension of the matrix fi' is p = ON. Strictly speaking equation (8) is valid 
if and only if the matrix fii has an inverse. Otherwise the integral over the As has 
to be restricted to the projection of the set of X > K onto the subspace of As for 
which ( exists. The expression (8) as we shall see below, is the main ingredient 
of our approach. One should stress that the matrix fii is in general idependent. 
Further proceeding consists of evaluating the expression (8) for large N and s limits, 
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and using the saddle p i n t  technique. It turns out that saddle p i n t  for s is attained 
for real, positive s. Moreover, the value of s at the saddle p i n t  tends to infinity, 
when a becomes critical. Only the minimum of the quadratic form in the exponent of 
the integrand of the expression (8) contributes to the integral over the As. Following 
1141 the final result reads 

W Tarkowshi and M Lewensfein 

where (.) means the averaging over Fs. The equation (10) determines the critical 
curve a,( K ) .  Note that its left-hand side depends explicitly on n and implicitly on a, 
through the dimension of A?i. Obviously, the exact solution of this equation is very 
difficult. The minimum of the quadratic form in parenthesis has to be taken before 
averaging, and, in particular, depends on the realization of the random matrix &fi. 
On the other hand, it is possible, however, to evaluate the minimum on the left-hand 
side of equation (10) for deterministic sets of patterns using a variational approach. 
The details of such applications of our method ware presented in [14]. 

The difficulties with exact accounting of (10) in the case of random patterns 
stimulated us to look for an approximate approach. Here we propose the approximate 
method of solving the equation (lo), which is based on the theory of random matrices 
and allows us to determine upper and lower boundaries of the critical curve a, as 
a function of the stability parameter n. In order to do that one has to know the 
spectrum of the overlap matrix 01, defined in (10). If matrix A? is bounded from 
above and below, we immediately obtain 

where A,, and A,,, are the minimal and the maximal value of the eigenvalues of 
the matrix A?, respectively. The upper and lower bounds of the critical curve have 
then the following form: 

K 2  = A,,,/a n2 = Ami,/a. (12) 

The advantage of this method is obvious: when evaluation of the exact critical curve 
is hard or impossible, one may easily obtain boundaries of this curve using the 
average density of the eigenvalue spectrum of the matrix A?. Of course, accounting 
of eigenvalues of the overlap matrix can also be, in particular cases, very difficult, but 
to this aim one may use standard methods, which were discovered and developed in 
the random matrix theory. In the next section we use such methods to solve a few 
interesting examples. 

It is worth stressing that estimates of Ami, and A,,, kom the eigenvalue spectrum 
are, strictly speaking, valid if and only if the eigenvalue spectrum is self-averaging. 
For standard random matrix ensembles it is true [15,21]. The probability of finding an 
eigenvalue A outside of the interval [A,,. A,,,] is finite only then, when lA-Amin1 or 
I A  - A,,,I are of the order of O( N - ' / ' ) .  We expect that a similar property holds for 
all of the examples of matrices considered in the following. All of these matrices are 
constructed for random unbiased patterns. For biased patterns correlation matrices 
have typically one additional eigenvalue of the order of N [U]. This fact may lead 
to a significant modification of the upper bound for K. 
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3. Spectrum of the overlap matrix for uncorrelated patterns 

Let us investigate optimal storage conditions for the simplest case of unbiased and 
uncorrelated random patterns with the probability distribution 

Pr(.$ =*I) = f (13) 

for all and i. Such a case of purely stochastic patterns was investigated hy E 
Gardner 141. Our treatment of this problem depends on of calculating the average 
eigenvalue density of the matrix M .  This is done by using the so-called supersymmetry 
method [20]. Leaving all technical details (which are contained in the appendix) we 
describe below the method of calculation of the average eigenvalue density, which 
becomes exact in the limit of large N. 

In all of the cases considered the supersymmetry approach leads to the conclusion 
that the logarithm of the determinant of the matrix A?f is a self-averaging quantity 
(see appendix). In other words 

where E is a small positive real number (see [22]) and e( A )  is the average eigenvalue 
spectrum of the matrix M 

In this expression {Aj ] ,  j = 1,. . . , p denote the set of eigenvalues of the matrix &f. 
If so, then we can calculate e( A )  as well as Amin and A,,,, simply by averaging 

(14). We introduce 

3 (det-"*(i(A - iE) - &?I) (16) 

where fi is the overlap matrix defined in (9). Note that by changing the integration 
variables z,, -+ .$x,, the matrix M from (9) can be substituted by 

From (14) (see also [22]) it follows that 

a 
a n ~  ax Im -In Z(A). e(A) = -- 

On the other hand, it is easy to observe that 

2 
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The constant value in front of the all integrals, which expresses the quantity Z( A), is 
negligible because the In Z enters equation (18). 

Introducing macro-variable s = E,, z:/N and its conjugate counterpart i, the 
Z( A )  reduces to 

W Tarkowsld and M Lewenstein 

%,T,. :\ 

(20) 
=: Jds d%e-''',",", 

The above integral is evaluated then by the saddle-point method. The final result has 
the following form (see also [16-181): 

4a - ( 1  + a- A)2 
2 r a A  e(A) = J 

for x E [( 1 - &)',(l+ &I2] where a < 1, and 

for A E [( 1- &)', (1+ &)'I U (0) while a > 1. For other A,  the density e( A )  = 0. 
As we can see, the density of the eigenvalues spectrum has quite a regular shape 
anu raKt:s mt: vaiut: zero on its extreme puinw. i n e  pram.. UI tnt: ueira iunction 
is quite easy to explain. The inverse of the matrix M may be written as a sum of 
N projector operators in the aN-dimensional space. When the dimension p = a N  
of the overlap matrix &f becomes larger than N some of the eigenvalues (exactly: 
(a - l)N) take the value zero. Now one may write investigated bounds for the 
critical curve. In this case 

._. _..... AL. ....... _.._ _ _  I_. ..~~ .._.. __I__. -. _...._.. _ L  _L. >. I_ .  C~_._I._ 

A,,, = (1 + 43 
Ami, = (1 - &)2 

(23) 
(24) 

and the upper and lower boundaries respectively read 

a 
Of course, we should take into consideration the 6 function in the formula (22). That 
limits the validity of the lower bounds to the region of 0 < a < 1. 

2 to allow 
comparison with the other results. The long-dashed lines in both figures are Gardner's 
exact curve, while the solid lines are the limitations obtained from equations (26). 
One should stress that the differences between all three lines for large enough K 
are very small. For small K, the precision of our estimate is worse. Obviously, the 
lower bound has greater importance than the upper one. In the statistical sense (with 
probability one), the area below the lower line is the stability area. That means that 
for each point in the described (a, K )  area the conditions for storage of a set of - - - . A T  ---An- -n++a--i .,Ah cmh:lihi r n _  hnlfil larl  nn tho nther hnnrl shnvp the y - U,, .~,,"",,, p , , c , , , a  n .U, 'LY".,,L, n ".., ,..,. "". yL. .L.., L.Y..", ...- 
upper line, all points are unstabilized. 

Summarizing this section we stress that results obtained by using the variational 
approach differ not much from the exact one at least for large n. The relevance of 
our approximate method increases when it is impossible to obtain the exact result. 

The results obtained in this section are plotted in figures 1 and 



@lima1 storage conditions in neural network memories 

4. Estimations of the storage cunditions for correlated sets OC stochastic patterns 

In this section we apply the variational method to calculate bounds of the critical 
curve for several specified sets of patterns. The exact expressions for the critical 
curves in this case are rather hard to obtain. In these cases our approximate method 
plays an essential role in understanding the mechanism of remembering and storing 
the sets of data. We stress that in principle the variational limitations can be obtained 
hi arbiiiary set of patterns. Of course, the exactness of these bounds can diEer for 
each considered case. 

As the first example of using of the wriational approach we investigate the set of 
'semantically' correlated patterns defined as follows: 

6257 

(Ff) = 0 (27) 

(28) 

C(0)  = 1. (29) 

while 

P P' 
(€j € j , )  = 6 j j , C ( p , ~ ' )  

for all j = 1,. . . , N and p = 1,. . . , a N .  Obviously 

The above expressions mean that the patterns are unbiased, Le. the average over 
single unit for each pattern is zero ((r are statistically independent for different i). 
As a quite interesting example we can take the exponential shape of the function 
C( lu - ~ ' 1 )  = exp[-( l /L,)Ju - p'l]. Random patterns with exponential correlations 
of the kind (28) are quite generic, and can be easily generated. For a given i they 
correspond to thermal equilibrium states of the one-dimensional Ising model with the 
Hamiltonian H i  = - E,, (f(fti .  The temperature is related then to the correlation 
length L, through 

L,  = -(lntanh(l/T))- ' .  (30) 

The special case of exponentially correlated patterns has recently been investigated by 
LW L L J J .  NI UIW pa~u~uiai cast:, we nave D~:CII aoic LU snuw mal m e  sruragt: capacity 
a tends to infinity as L, - 00. This is a generalization of the classical WUshaw 
results for sparsely coded patterns ([23], see also [4]). We stress, however, that this 
exact result could only be obtained for the exponential form of C ( p , p ' ) .  

Here we shall consider the general form of C ( p , p ' ) .  In order to do this we 
again use the determinant method. After calculations similar to those in section 3 
expression (16) becomes 

.." I t l l  n-_ .,.Î  ---.:-..a ^ _ ^ ^ ^ ^  L c-.- ^ L a -  .- .I -1.. *I. .-..... 

Let s = E.  yj/N, :-conjugated variable and C, denotes eigenvalues of the 
correlation matrm C ( p , p ' ) .  For C ( p , p ' )  = C( lp  - p'l)  eigenvalues are given by 
the Fourier transform 

? 
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where wk = 2 a k / p  and p = a N .  
In the limit of large N and p the quantity Z(X) may again be evaluated, using 

the saddle-point method. ?b this end we have to find a minimum of the 'free energy' 

W Tarkowshi and M Lewenstein 

3 = S; + f In (; - a) + ?(In (; c - A)) (33) 

where ( . ) e ( c )  denotes the average value over the spectrum of the correlation matrix 

(f(C)) = Jc'" f (C')p(C')dC' .  
C.i. 

For C ( p , p ' )  = C ( l p  - p' l )  we have 

for w such that C ( w )  = C. Note that the requirement C(0) = 1 implies that 

(34) 

Using the saddle-point method to evaluate the integral (31) one may easily obtain 

where ( . ) e ( c )  is the average over the distribution of C considered. 
In this paper we find the bounds of the critical curve in the two generic cases: 

when the function e( C) is a uniform and semicircular distribution. From this point 
on we omit somewhat complicated, but rather elementary calculations and show only 
our results. 

First we consider a uniform distribution of C 

for Cmjn 4 C 4 Cma. Note that the condition (36) results in the equality 
C,, + C,,, = 2. Secondly we consider the case where the distribution of C has the 
semicircular form 

for a - T < C 4 a + r, where r is the radius of the circle and a is the distance from 
the centre of it to the p i n t  C = 0. The constraint (36) implies that T + a = 1. 

The accounting for the limits A,;,, A,,, of the eigenvalue density consists in 
eliminating from the (37) the variable S. It can easily be seen that Ami,, (Amax) are 
attained when a real solution of (37) ceases to exist. Simple graphical analysis of (37) 

with respect to s is zero 
shcm that :his happeas. at the poist %,he" the deriv2tive cf the !eft-hE!!d side of (37) 

- - 2aX ) = o .  
2 ( ( s C - 2 W  e(c)  
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Equation (40) means that at this p i n t  the real solution of (37) for s becomes doubly 
degenerated and bifurcates into two complex ones. The two equations (37) and 
(40) have two unique real solutions s ( a , n )  and A(a,n). The values of A(a,n) 
obtained in such a way are Amin and A,,,. In view of the complicated shape of 
the solution of (37) and (40) we solve them using a numerical method. The results 
(i.e. the dependence of the stability parameter K on the storage ratio a) are plotted 
in figure 1. The main difference between the solutions obtained depends on the 
character of the edges of the distribution e(C). In the case of uniform distribution 
(38) the eigenvalue density e( C) has jumps at the edges of its support. Far the 
semicircular law the eigenvalue density takes the value zero on each border of its 
carrier. One should stress that resulting bounds are practically identical for the two 
cases considered of distribution of C with the Same width, so we present only the 
results for uniform distribution e( C) in figure 1. 

2.5 

I 

2.5 

0 1 2 3 4 5 6  0 1 2 3 4 5 6  

Figure 1. Estimates of the critical capacity U as a Flgure 2 As figure 1. ercept that the thick dashed 
function of n: for various types of stored patterns. line now presents estimates for 'spatially' mrrelated 
The longdashed line mrrespands to Gardner's pattems wilh C,- C,in = 0.2, whereas Ihe shon 
a a c t  result for purely random patterns, whereas dashed line presents those with Cmx-Cmin = 1.8. 
the solid lines correspond to our estimates for 
purely random ones. ?he thick dashed line presents 
cstimates for 'semantically' mrrelated patterns with 
C,, - C,. = 0.2, whereas the short dashed line 
presents those for the Same ldnd of patterns with 
C,, - Cdn = 1.8. 

Similarly we can calculate A,;,, A,,, and e( A )  in the case of patterns correlated 
in a 'spatial' fashion. In this case .$ are statistically independent for different p ,  pi, 
hut 

(q = 0 (41) 

whereas 

(tTt$) = 6,,,,,C(Ij-j'1). 

As before, we introduce macro-variables s = E, x:/N, its conjugate counterpart s  ̂
and after calculations similar to those in section 3 we obtain the 'free' energy in the 
form 

F = s ; +  ~ l n ( ; - - ~ ) + S ( l n ( ~ ~ - ~ ) ) ~ ( ~ )  (43) 
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where (.)e(c) is the average over the spectrum of the correlation matrix C(i - j )  
(cf expression (33), the only difference being that the spectral transform is ‘spatial’ 
rather than ‘semantic’). The quantities A,,, A,, are determined as before from the 
equation 

W Tarkowski and M Lewenstein 

and its derivative 

After performing the numerical evaluation we obtain the two limit values of A. 
The results are plotted in figure 2 for the case of uniform distribution e( C). In both 
figures 1 and 2 the solid curves give estimations in the absence of any correlations. 
The thick dashed curves correspond to correlation width C,,, - Cmi, = 0.2. Note 
that for such small widths correlations do not lead to significant modifications of the 
estimates. The bounds change for (C,,,- C,,,) of the order of 1 (see narrow dashed 
curves). 

correlations of patterns. first of all the results for both uniform and semicircular 
distributions of C (of the same width) are practically identical. This means that the 
shape of the spectrum of the correlation matrix does not play an important role in 
the limiting bounds. On the other hand for ‘spatially’ correlated patterns the bounds 
of the critical curves depend rather weakly on the width of the distribution e( C), and 
do not differ very much for the result for uncorrelated patterns. This suggests that the 
exact results for ‘spatially’ correlated patterns may also lie close to Gardner’s original 
curve (1). The situation is quite different for ‘semantically’ correlated data. Here the 
dependence on the width of the distribution @(C) is rather strong. We may expect 
a similar strong dependence with the exact results. Indeed, analysis of exponentially 
correlated patterns shows that for ‘semantically’ correlated data the exact curve Lies 
far above Gardner’s one (1) when the correlation length is large [13]. 

!a sc~mary, %’e stress the sizli!arities axd diffcresccs he”,een the Fun fnrms nf 

5. Conclusions 

In this paper we present a generic method of evaluating the critical conditions for 
the storage of information in neural networks. This variational method employs the 
analysis of the spectrum of overlap matrices and allows one to find bounds of the 
critical curve which determine the phases of existence and vanishing of stability of 
the stored sets of data. One should stress that with the help of our method these 
bounds may be obtained, practically, for arbitrary patterns, for any particular form 
of them, and their correlations, etc. In this paper several examples of such bounds 
have been considered. We studied a wide class of overlap matrices corresponding to 

example ‘semantically’ correlated data plays a big role in psychology and the theory 
of information processing. In fact, in the recent neurobiological experiments of 
Miyashita 124,251 semantically correlated attractors were observed. Patterns in those 
experiments were learned in a specific sequence. Attractors that corresponded to 

va:i=iis types of pa:te:as. They are geseric fer mpny dieelenf physiz! sit.lltians. Far 
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subsequent patterns exhibited correlations that decayed with the time delay between 
learning periods. 'Spatially' correlated patterns are used in optical information theory. 
One should also stress that our results may be directly used for evaluating the learning 
time of various learning algorithms [16-181. 
Our method has many advantages, but is limited to the case of correlations that 

are bounded from below by positive Amin. In principle, however, it may be generalized 

then he restricted to the set of X,s that are orthogonal to the kernel of the correlation 
matrix (i.e. a set of those X,s that are annihilated by the correlation matrix). 

Finally we would like to mention the overlap matrices considered hy us have 
the same properties as the ones that are sums of random projection operators. Such 
matrices have been recently discussed for applications in nuclear physics and quantum 
chaos [26]. 

to *e C2SP of Amin = e. ???e minimcm of the q'K&2tlc fe:m iE expression (8) s!!nu!rl 
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Appendix. The supersymmetry method 

In this appendix we calculate in detail the eigenvalue spectrum of the matrix fi 
defined in section 2 (see expression (9)). The method is easily generalized to all 
the other considered overlap matrices [19]. As the first step we define the average 
spectrum e(A) of the matrix fi in the same way as in section 3 (see expression (1s)). 
Then one may write 

where the generating function Z (  J )  is defined as follows: 

Z ( J ) =  ( / Z J z , ' D d y p 2 ) @ ; D 4 ,  exp 2 i ~ z , ( ( A - i e - J ) 6 , , ,  -M,,,)z,, 

y,((X - ie - J)6,,, - M P , , ) y P ,  

P!,' 

+ 2i 
U,,' 

+2i  4;((X - ie + J ) 6 , , ,  - M,, , , )+ , ] )  (47) 
U*,, 

where the matrix eiements M,,, ,  are given by expression (iij.  i n  the above inregrai 
zp and y, are standard commuting variables, whereas 4,, 4; are Grassman anti- 
commuting ones 
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The normalization of the Grassman variables is such that 

d $ = O =  d f l  J J  1 

J ~ w =  Jz;; = J c d C  

so 
1 4 f l d 4 d f l  = J 2 R  

One then defines the so-called graded matrix 

where a. B.  6 and \91 are N x N. M x 

(53) 

. .  A4 x N and N x ~ ~ iimensional 
matrices, respectively. a, h?, have commuting matrix elements, whereas 6 and @ 
haveanti-commuting ones. We may introduce now the symbol det,, which denotes the 
supersymmetry counterpart of a determinant, and for such graded matrices is defined 
as follows: 

det,.!? = de t ( a  - \91( B)- '6)(det  (54) 
After introducing the new 'bosonic' (commuting) variables a j ,  b, and 'fermionic' 

(anti-commuting) ones a, a' the integral from expression (47) takes the form 

+ 2i 

+ 2 i p  

X ~ C X  - i E  - J )  + 2i Y$(X - ie - J )  + 2i 4;4,,(~ -ie + J )  

(55) 

Now we can easily do the average Over {s. Then we have to introduce the new 
macro-variables to disentangle the mixed terms in the resulting expression 

P P P 

~ r ~ f ( a j x , ,  + b j x ,  + $$,,aj + fqa;)  . 
N w + ' J  >> 

Variables X, Y, R and V are commuting, whereas C, E', A and A* are anti- 
commuting. We also introduce conjugate counterparts for the eight above-defined 
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variables 8 ,  9, 8, p, 9, p*, 6 and 6.. Integrals over the local variables zp ,  yp, 
a,, b. ,  a,, a;, 4,, and 4; then become Gaussian and can be performed simply. The 
resulting formula is 

3 

d X  d 8  dY d P  d R  df? dV d o  dC d p  dC' d e *  dA d 6  dA' d 6 '  

X e x p { N X z +  N Y Y +  N R f ? +  N V V +  N C p -  NC'g' 
+ N a b  - N A . 6 . -  ~Indet ,Q(X,Y,R,V,C,C',A,A')  

- La 2 l nde t ,P (8 ,Y , f? ,  p,g,e*,6,A*)). (57) 

The graded matrices 0, P that enter expression (57) have the following form 

i - 4 X  -4R -4C 

-4C' -4A' -i + 2V 
(59 

-A ) . (59) 
2i(X + J )  - V 

The integral in the expression (57) may he evaluated using the saddle-point 
method. Generally the saddle-point equations give 

The 'bosonic' and 'fermionic' parts of graded matrices thus decorrelate and the final 
result is the same as (21) and (22). It indicates that indeed 'logdet' is a self-averaging 
quantity. One may easily check by investigating the eigenvalues of the graded matrices 
Q, P that the solution (63) is locally stable. 

One may add that the above results can he also obtained within the replica method 
[27,1&18,22]. 

Nofe added it pwf. Ihe problem of dorage of correlated patterns in neural network memory has 
been recently solved by h e n s t e i n  and Drkowski ('spatial' and 'semantical' mmlations) [13,28] and by 
Monasson ('spatial' correlations) 1291. 
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